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THE DYNAMICS OF THE COLLISION BETWEEN A RIGID BODY AND 
A FLEXIBLE STRING AND MEMBRANE* 

S.S. GRIGORIAN and SH. M. MDTALLIMOV 

An exact analysis of the boundary conditions at the point where an element 
of an absolutely flexible string or membrane meets the surface of a rigid 
body colliding with it as the "supersonic" velocity of the rigid body, 
the formulation of the problem concerning such a collision, accompanied 
by the tearing of the string of the rupture of the membrane, and the 
construction of its solution for the selfsimilar impact mode with constant 

velocity are given. 
The principles of the mathematical theory for the OOlliSiOn Of a 

solid with flexible structures in the form of strings or membranes were 
laid by Rakhmatullin /l/. A number of interesting results were obtained, 
but certain questions of the theory have not been clarified with finality. 
In particular, no final deductions were made regarding the set of possible 
formulations of the boundary conditions at the point where the element 
of flexible construction meets the surface of the solid. There was also 
no formulation of the problem of a collision accompanied by rupture of 
the flexible structure. The solution of these two questions is given 
below. 

1. We will limit ourselves to examining the case when the material of the flexible 
structure is described by a linear law of elasticity in terms of conditional stresses while 
the collisions are such that the point of enoounter of the structure element and the body 
surface is displaced at "supersonic" velocity over the structure, i.e., at a velocity exceeding 
the velocity of elastic wave propagation. Since abrupt bending of the structure (Fig.1) occurs 
at the point of encounter, i.e., a "jump" change in the momentum vector of the structure 
element as well as of its state of stress and strain is observed, a local reaction of the 
impacting body surface will be developed at this point which is modeled by a concentrated 
force. Taking the above into account for an idealized consideration of the problem, when the 
flexible structure (string or membrane) is considered as a one- or two-dimensional deformable 
continuum, the mechanics of the events in a small neighbourhood of the "break" point of the 
structure is modelled by introducing a "wave of strong discontinuity", i.e., a scheme with a 
jump-like change in the mechanical parameters at this point is introduced. 

The Lagrange and Euler coordinates r and u, measured, respectively, along the strucutre 
from the point of its first contact with the impacting body and along the surface of this 
body, are introduced as the mechanical characteristics of the process in the one-dimensional 
case, as are the radial and azimuthal stresses Er,Oe (in the case of a string, one stress is 
along the filament Hr = ii,), corresponding to the strains 

Fig.1 
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where s(u) is the Euler coordinate measured along the undeformed structure (Fig.11, the 
"conditional" stresses or, ce are determined from the formulas (the material density is 
assumed constant) 

3 
I&=---_ 

5’0 

l-k?? ’ De=- I.7 
(1.2) 

and the law of elasticity is taken into account in the form 

= - (Fe + VET) 1 - $4 
(1.3) 

where E, v are the elastic modulus and Poisson's ratio. 
In the case of a string we have cr= EE, instead of (1.3). 
The equations of motion are written in the form 

f 0, v 71siny + ur *+p$-cosy)sign-$- 

in the case of the membrane and 

(1.4) 

(1.5) 

in the case of a string. Here 17 = V (t) is the velocity of the impacting body, y is the 
angle between the unperturbed string (membrane) location and the tangent to the generatrix of 
the axisymmetric impacting body surface at a given point, the dependence y = y (u) is &termined 
by the body shape, p is the material of the deformable structure, and p is the coefficient 
of friction of the structure on the body surface. Equations (1.4) and (1.5) are written in 
a coordinate system coupled to the impacting body, and consequently, inertial forces pdVldt 
occurred in them. 

The relationships on the wave of strong discontinuity have the form 

b - u, &/co5 y -- 1‘2 p= (1.6) 
1 -t Frl i -‘.r r-j 

p (b - cl) (Pcos y - v, Sin y) = (Q + (J,~ sin 7) (1 * E,,) 

au bU 
u1=  ̂( J at I' V? = ( ) -z- 2’ 

b=I'ctgy 

The subscripts 1, 2 refer to the quantities in front of and behind the front of the strong 
discontinuity, and F and Q are the tangential and normal components of the concentrated.force, 
the reaction of the body surface, relative to the body surface. 

An important assumption that an element of the structure (string, membrane) is located 
on the surface of the body directly after collision with this surface is made in writing 
relationships (1.6). In a certain sense this means that the collision is inelastic and can 
be considered as schematically taking into account the irreversible effects accompanying the 
local bending in a finite angle of the thin structure at the point where it collides with the 

b& 

where 

surface. 
As already mentioned, we shall later consider the "supersonic" case when b = v ctg y > a, 

(1.7? 

is the velocity of elastic wave propagation in the structure, and therefore, perturbations 
from the domain behind the front of the strong discontinuity cannot influence the parameters 
directly on this front, which should therefore be found independently of the behaviour of the 
solution in the domain behind the front. We will then have E,* = 0, v1 = 0 and the relation- 

ships (1.6) will reduce to the form 

v2 = (licos y - 2 - 52) v ctg Y (1.8) 
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F= --a,,+pVctg~(Vsiny--*) (1.9) 

Q = pV* ctg y cos y (1.10) 

The condition for continuity of the displacements 

5 (u,) = z (111) = r (1.11) 

should certainly be appended to the above relationships. 
Using (1.11) and (l.l), we obtain %,=O, and we have from (1.3) and (1.7) 

0,s = pu%*, %¶ = v%, (1.12) 

Substituting this expression for (I,, into (1.9) we obtain 

F = -~II~L*E,~ + pv ctg y (V sin y - u1) (1.13) 

which, together with (1.8) and (1.10) forms a system of three equations to determine the four 
quantities F,Q,erz,v,, i.e., the system is not closed. 

To close it, one independent relationship must still be added. We can take the following 

conditions /2/ as such a relationship 

v,=O (lFlc~*Q) (1.14) 

which can be conserved only when the inequality written in parentheses is satisfied, where p* 
is the coefficient of Coulomb friction for the structure material-impacting body surface pair 
in terms of the surface reaction components F,Q. In general, p'r can differ from p. 

It may be thought that conditions (1.14) will be conserved only for a certain set of 
values of the problem parameters whose boundary is governed by the condition 

IF I= rt+Q (1.15) 

It is natural to assume that (1.15) must be taken as the closing condition outside the 
limits of the set; certainly u,fO already here so that the closing condition is written in 
the form 

F 3 p,Q sign us (i.16) 

However, as will be shown below, this does not exhaust all the possibilities. It turns 
out that for certain values of the problem parameters the quantities ar1, E,; found by using 
the closing condition (1.16) become negative, which is not acceptable from physical considera-. 
tions because flexible filaments or membranes cannot resist compression. 

To construct a solution with physical meaning under these conditions, a scheme is necessary 
that takes account of the zero resistivity of the structure to compression. Evidently 

(Jr2 = 0 (1.17) 

will be tile condition limiting the set of values of problem parameters for which the closure 
(1.16) will be suitable. 

AS such a scheme we take the requirement that relationship (1.17) must be satisfied for 
the set of problemparsmeter values for which a solution with the condition (1.16) will yield 

(Jr2 < 0. The elasticity relationships (1.3) are already unacceptable here and condition (1.16) 
in addition to (1.17) is conserved. 

Therefore, the set of all possible values of the problem parameters consists of three 
parts for which the closing relationship is (l-14),(1.16), and (1.17), respectively, whereupon 
(1.16) is also satisfied simultaneously. It will be shown below that within the limits of 
each of these subsets the solution is unique and continuous on their boundaries. 

We first consider the closing condition (1.14). Substituting it into (1.8), (1.9) and 
(1.12), we obtain 

-l/cosy-l,F=pv*COs~-ppa*(l/cosy-~) (1.18) 

y - pa* (UC05 v - 1)< p*pv* ctg y cos v) 

It is interesting to note that the strain E,* and stress crrE, 00% (see (1.12)) are in- 
dependent of the impact velocity V in the regime under consideration, and depend only on y. 

The boundary of the set of problem parameter values for which the solution (1.18) is 
applicable is determined by the transformation of the inequality in parentheses in (1.18) into 
the equality 

Relation (1.19) is shown in Fig.2 in the variables Y, M. Also shown there is the curve 

M=tgy (1.20) 
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yielding the lower bound for M that corresponds to a "supersonic" impact. 
Thus, the solution is given by (1.18) in the domain above (1.201 and to the left of 

(1.19). To the right Of (1.19) the solution should be constructed by using the closing con- 
dition (1.16), which yields 

er. = IiWI(M* - tg* y)] Illcos v - 1 -sin y (tg y - tg r*)l (1.21) 

VP = vctg y (l/cos y - 1 - em) 

It can be verified that e.% and vJ determined bv (1.18) and (1.211, agree on the line , 
(1.19), i.e., the solution remains continuous on going-over from one regime 
the domain to the right of the boundary (1.19) there should be v,>O and 
indeed also holds. 

to the other. In 
e,,> 0, which 

the condition The passage to the third possible regime is made on a line governed by 
erZ = 0, where ere is taken from the first formula in (1.21). This yields 

Y = 2Y* 

i.e., the boundary of the passage to the third regime is the line (1.22) in 
It can be verified that this line, the boundary (1.191, and the line (1.20) 
point. 

(1.22) 

the y, M plane, 
intersect at one 

In the domain above the line (1.20) and to the right of (1.22), the solution is determined 
by the third regime characterized by condition (1.17). This regime corresponds to the col- 
lisionprocess forwhich thestring (membrane) element is wrinkled in the radial direction beyond 
the point of collision, is folded into a "bellows" so that its initial length is "shortened", 
i.e., e,, < 0, but this occurs for zero stresses. Under these conditions, as has been noted, 
it is already impossible to use the connection between G and e,2 given by the elasticity 
relationships (1.3), and (1.16) must be used in conjunction with (1.17). Taking account of 
the above, the solution for.this regime is given by the formulas 

erz = licos y - 1 - sin y (tg y - tg y+) 

5, = v cos y (tg f - tg y*) 

(1.23) 

It can be seen that vl> 0, crz< 0 is obtained by these formulas for y-2 2y,. i.e., 
wrinkling actually occurs. Comparing (1.23) and (1.21), the continuity of the change in 

ha7 us during passage through the boundary (1.22) can be established. 
Therefore, the complete solution of the problem has been constructed in the neighbourhood 

of the point of collision between the flexible string or membrane and the rigid body surface 
for a supersonic collision regime. This solution is unique, single-valued, and varies con- 
tinuously during passage through the boundary of the domains of variation of the input para- 
meters of the problem which are characterized by different closure conditions. 

2. To describe the process of flexible deformable construction rupture under impact, it 
is useful to draw up a scheme of the process. In the case of the impact of a rigid body on 
a string, the criterion of no rupture can evidently be taken simply in the form 

max a,< (T* (2.1) 

where Q is the breaking strength of the string material. If the condition 

mar 0's = 0* (2.2) 

is achieved at some point of the string for a certain combination of the parameters, then for 
a set of problem parameters outside the boundary (2.2), the solution is constructed by in- 
troducing tearing of the string, i.e., r& = 0, at the site and at the time where and when 
condition (2.2) is achieved depending on the solution of the problem without rupture. 

The situation is more complex when modeling the membrane rupture process. It is con- 
ceivable that the limiting condition will, as before, have the form (2.11, where u,, must 
just be understood for a%, i.e., any normal stress. A more complex limit condition, con- 
taining different stress tensor invariants, can certainly also be formulated. The main 

difficulty, however, is in taking the correct rupture scheme which will not always be the 
local tearing in the caseof a membrane, as in the case of a string, but can turn out to be a 
process of propagating discontinuities along the membrane. 

Under static conditions, m embrane rupture ordinarily occurs by propagation of one dis- 
continuity. Under the conditions of high-velocity impact by a solid on a membrane, the 
rupture scheme will be different, at the site where the limit condition of the type J2.2) Will 
first be achieved, several discontinuities will be generated and start to be propagated, and 
their number will generally increase with the impact velocity. 

This assumption is based on the fact that at high velocity of the process the effects 
of unloading the membrane elements abutting on the tip of the discontinuity being propagated 
will not succeed in being propagated a noticeable distance and will unload the zone approaching 
the ultimate stress state; consequently, the material in such zoneswillbe loaded "independently" 
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will achieve the limit state and be ruptured, which will indeed appear in the form of the 

instantaneous generation and propagation of discontinuities. Such a process is observed in 

the dyn&c, rupture of three-dimensional solid brittle bodies subjected to intense dynamic 
action, for instance, the action of an explosion. The rupture failure process here is the 

propagation of a rupture front on which a largenumberof spa11 cracks or normal separation 
acts and the mathematical model with such a front is in good agreement with the real rupture 
process /3/. These considerations enable the process of dynamic membrane rupture under 
impact by .a body to be modeled also by the insertion into the problem of a rupture front being 
propagated at whose leading side (in the unruptured part) a limit condition of the type (2.2) 
is achieved, while on its back.side (in the ruptured part) the appropriate (rupturing) stress 
vanishes. Test shows that such a rupture scheme is actually observed, where the number of 

discontinuities grows with the impact velocity on the membrane /4/. 
Below we borrow the construction of the solution of the simplest problem on impact by 

a wedge at constant velocity on an elastic string taking the possibility of rupture taken 
into account. Since the parameter a* is a constant on the dimensionality of the stxess in 

condition (2.21, the problem under consideration will be selfsimilar, equation (1.4), resulting 
in the form 

(2.3) 

has the solution 

u = ctF (5), 5 = x/(ct) (2.4) 

where 

F = A$ + B; A, B = con& (2.5) 

and the problem is to construct the solution of the initial impact problem by using (2.4) and 
(2.5), the conditions for achieving the limit state and rupture, and also the results of an 
analysis of the events at the point of encounter of the string element and the wedge surface, 
examined in Sect.1. 

We will examine only the supersonic collision mode. 
We start with 

According to (2.4) 

yield the complete 

For this case 

the case when-the solution beyond the break paint is given by (1.18). 
and (2.51, in this case E= = A - 1, u =O so that the relationships 

A = llcos y, B = 0, 0 :< x < V t ctg p (2.6) 

solution of the problem with the condition at the wedge apex 

u Ix=0 =o (2.7) 

the limit condition has the form 

pep (Ucos yp - 1) = u* (2.8) 

which is an equation in yp withthe solution 

Yp = Yp GJ*GPC2H (2.9) 

so that fox y<yp there will be no rupture (tearing) of the string, while the string will 
be ruptured for y> yp. 

It is interesting that the limit condition does not contain the impact velocity and 
rupture will or will not depend on only the collision geometry (on the value of v). 

The solution with rupture will differ from the solution without rupture only in the 
domain OGs<et. Because of the condition a,% = 0 for z = 0, 
we shall have 

which expresses tearing, 
A = 1 from (2.5) for F in this domain, while the condition of continuity of 

the displacements for z = ct will yield B = l/cos y - 1. In this domain the filament is 
stress-free and moves at the constant velocity B.C. 

Construction ofthesolution when the state beyond the break point is determined by (1.21) 
is somewhat more complex because, unlike the preceding, these formulas cannot describe the 
solution up to the wedge apex since there should be v = 0 there while 
(1.21). These formulas are true just in the supersonic domain 

V#O according to 
In the 

domain 0 g x c ct 
ct<z<Irtctgy. 

formula (2.5) for B = 0 should be used, and the quantity A should be 
found from the continuity condition for u for r = ct, which yields 

A = 1 i ~~2 -+ vBic (2.101 

where GL, VI are given by (1.21). 
Therefore, part of the string is slowed down in the domain 

is PU2c greater than in the domain beyond the break point. 
0 c s<ct, while the stress 

It is consequently conceivable 
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that precisely this stress should be substituted as mas LT, in the limit condition, 
Condition will become 

and this 

EfS _t UJC = "*Q& (2.11) 

In addition to Y this relationship also contains EI, i.e., the limit condition on the 
v,M Plane will be a Certain Curve to the right of (1.19) and the left of (1.22). In the 
domain below this Curve the motion will not be accompanied by rupture, while rupture will 
occur above it. 

The solution will rupture will differ from the solution without rupture just in the 
domain 0 < tr < ct. Because of the boundary condition 0, =O for x=0, which expresses 
the fact Cf the 0cCurence of string tearing at its constact point with the wedge apex (it is 
there that mar 0, first occurs), we obtain A = 1 for (2.5) while B is found from the 
condition of continuity of the displacements for z =ct 

B = E,p + v,lc (2.12) 

where ars, VI are given by (1.21). 
Therefore, for filament rupture a part of it O,<z<ct is unloaded from the stresses 

and moves as a whole with velocity 

up = VI + Cq.2 (2.13) 

We finally consider the solution of the problem fox the values I*> 2y,, i.e., in a 
regime when wrinkling occurs behind the break point. In this case the interface between the 
domain with the wrinkling and the domain adjointing the wedge apex in which a,> 0, i.e., 
where the string is again stretched, will not be descxibed by the equation of the "sonic" 
front r = et, but will be determined because of selfsimilarity, by the equation 

z = LOt (2.14) 

where w is an unknown quantity to be determined during the solution of the problem. The 
ordinary Conditions on a jump, relating the solutions (2.5) and (1.23), should be satisfied 
on this front of wrinkled filament expansion. The A and w are determined from these con- 
ditions (B = O in (2.5)) because of condition (2.7)) 

A E 1 + mMcos y(tg y - tgy*j. uQc=m= V_ - 5 (2.15) 

In the expansion domain O< s(u:t we have 

v=O,o,=pC*(A-1)>0 

The limit condition 

(2.16) 

A (u, M, v*) - 1 = U,l(PC‘? (2.17) 

determines a curve in the domain r> 2y, below which the motion will not be accompanied by 
rupture, while above it will. It can be shown thatthis curve links up continuously with 
the analogous curve (2.11) in the domain y< 2y, and emerges on the "sonic" boundary il.201 
for finite M, i.e., fox a certain y< n/2. 

For this regime the solution with rupture is quite simple, it will always agree with the 
solution in the bellows domain beyond the filament break point, i.e., in this case (1.23) is 
true everywhere in the domain 0 Q xc lrlt ctg y. 

The solutions with rupture constructed above are simultaneously solutions of the problem 
of a "supersonic" collision with constant velocity between a semi-infinite free string and a 
flat wall inclined at an anole v to the strina. 

I I _ 

In Fig.2 we show domains with the different motion regimes and 

Fig.2 

the line of limit states (2.11), (2.17). Note that if this line 
is disposed as shown in Fig.2 , rupture is impossible in the domain 
to the left of the line (1.19). This is associated with the fact 
that the stresses behind the break point vary continuously on the 
line (1.19). But the stress to the left of the line (1.19) is 
constant everywhere in the solution of the problem of impact by a 
wedge, i.e., is equal to the stress behind the break point while the 
stress in the domain adjoining the wedge apex is greater than behind 
the break point in the solution of the probfem of impact by -a wedge 
for the domain to the right of th_e line (1.19). But this means that 
max ar to the left of (1.19) is less than maxo, to the right 

of (1.191. However, according to Fig-Z, the inequality maxu,< o* 
is conserved to the right of (1.191, meaning that it will also be 
conserved to the left of (1.19). It also follows from this that 
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rupture occurs to the left of (1.19) only when the curves (2.11) and (2.17) drop and shrink 
to the "triple" point y = Zy,, M = tg Zy,. The line (2.9) which will shift to the left as 
(J, decreases will be the boundary separating the solution with rupture from the solution 
without rupture. 

Thus, for very large values of a* rupture is possible only in the second and third 
regimes for high impact velocities, the curve of the limit states is in the domain of large 
values of M. As c* decreases, this curve drops montonically, and for a certain IJ* shrinks 
into a triple point. As cr decreases further, it is transformed into the segment of a line 
(2.9) which tends to the axis M as u*+ 0. 

The solution of corresponding problems on the impact of a cone on a membrane can be con- 
structed by exactly analogous methods by using the singularities of the solution at the break 
point of the structure and the sbheme taken for the rupture process. 

The results obtained here can be utilized in the general case of non-selfsimilar problems 
with curvilinear outlines of the impacting body surface. 
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ON THE THEORY OF LONG WAVES IN AN INCLINED CHANNEL* 

A.M. TER-KRIKOROV 

A method resembling the asymptotic small-parameter me+hod /I-3/,is used 
to study.the long steady waves in an inclined channel, with the waves 
degenerating into solitons as their length tends to infinity. By 
analogy with the theory of stability of elastic rods, the process of 
transition from one-dimensional steady flow to two-dimensional flow, can 
be represented as instantaneous, with the result that all rectilinear 
stream lines becomes curved, but the values of the Froude and Reynolds 
numbers remain the same. It is shown that solutions of this type can 
exist, provided that the velocity of wave propagation and the value of 
the Reynolds number are nearly critical. Simple formulas are obtained 
for the wave profile, and the dependence of the wave propagation on the 
amplitude. If the Reynolds number is small and the angle of inclination 
of the channel is nearly n/2. the same formulas hold even without the 
assumption that the Reynolds number is nearly critical. The method opens 
up the possibility of proving existence and uniqueness theorems by analogy 
with /l-3/. Technical difficulties arise in connection with the estimates 
for Green's function for the biharmonic operator. 

1. Formulation of the problem. Consider the two-dimensional steady flow of a 
homogeneous, incompressible heavy viscous fluid with a free boundary, over a rectilinear bottom 
inclined at an angle a to the horizontal. We shall assume that the two-dimensional flow 
is caused by instantaneous loss of stability of a one-dimensional flow characterized by the 
Reynolds number R =Q/Y and Froude number F = gHVQ" (Q is the flow rate and H is the depth 
of the stream. We shall write the equations of motion in a coordinate system moving in a 
direction parallel to the channel bottom with wave velocity c. The origin of coordinates 
is chosen at the free unperturbed boundary, and the y axis is parallel to the force of gravity. 
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